[[Abstract algebra MOC]]
# Ring theory MOC
[[Category of rings]]
## Objects
The graph below is a non-exhaustive classification of rings
```mermaid
graph TD
NumField[Number field]:::internal-link
ACField[Algebraically closed field]:::internal-link
Field:::internal-link
NumField --> Field
ACField --> Field
Division[Division ring]:::internal-link
Simple[Simple ring]:::internal-link
PIR[Principal ideal ring]:::internal-link
Noetherian[Noetherian ring]:::internal-link
Field --> Division --> Simple --> PIR --> Noetherian --> Ring
EDomain[Euclidean domain]:::internal-link
PID[Principal ideal domain]:::internal-link
Field --> EDomain --> PID --> PIR
Dedekind[Dedekind domain]:::internal-link
Dedekind --> Noetherian
Dedekind --> IDomain
PID --> Dedekind
UFD[Unique factorization domain]:::internal-link
GCDDomain[GCD domain]:::internal-link
IDomain[Integral domain]:::internal-link
Commutative[Commutative ring]:::internal-link
PID --> UFD --> GCDDomain --> IDomain --> Commutative --> Ring
Ring:::internal-link
Rng:::internal-link
Rig:::internal-link
Ring --> Rng
Ring --> Rig
```
### Examples
- [[Modular arithmetic]]
## Morphisms
- [[Rng homomorphism]], [[Ring homomorphism]]
## Internally
- [[Characteristic]]
- [[Krull dimension]]
### Elements
- [[Unit]], [[Zero-divisor]]
- [[Irreducible element]], [[Prime element]], [[Associate elements]]
- [[Algebraic element]], [[Integral element]]
- [[GCD]]
### Ideals
- [[Ideal]]
- [[Maximal ideal]], [[Prime ideal]]
## Externally
- [[Subrng]], [[Subring]], [[Field extension]]
- [[Ideal]], [[Quotient ring]]
## Related
- [[Module theory MOC]]
- [[Field theory MOC]]
- [[Algebraic number theory MOC]]
#
---
#MOC | #state/develop | #lang/en | #SemBr